Jump to content

Taxol Plus Carboplatin Fails To Show Clinical Advantage

Recommended Posts

Title: ASCO MEETING: Taxol Plus Carboplatin Fails To Show Clinical Advantage Over Standard Regimen In NSCLC

ATLANTA, GA -- May 17, 1999 -- Total drug costs for Bristol-Myers Squibb Co.'s Taxol (paclitaxel) Injection plus carboplatin for non-small-cell lung cancer (NSCLC) were five times those of Glaxo Wellcome Inc.'s Navelbine (vinorelbine tartrate) Injection plus cisplatin according to results of the phase III, multicentre Southwest Oncology Group (SWOG) Study 9509.

The study of 444 patients was presented at the 35th annual meeting of the American Society of Clinical Oncology (ASCO) and made available to the media by Glaxo Wellcome. Navelbine-cisplatin was established as the SWOG standard of care in a study presented at ASCO in 1996.

The resource utilisation results of SWOG 9509 showed that drug costs and total medical costs (median per patient) were lower for the Navelbine-cisplatin arm ($4,116 US and $17,876 US) than for the Taxol-carboplatin arm ($19,895 US and $34,693 US). These results were the only significant difference between the two treatment regimens -- no significant differences in survival, response rates or quality of life were seen between the Navelbine-cisplatin and the Taxol-carboplatin treatment arms.

The primary objective, according to Karen Kelly, MD, University of Colorado, the study's lead investigator, was to determine whether Taxol-carboplatin offers a survival advantage over the SWOG standard regimen Navelbine-cisplatin. Based on the study design, the Taxol-carboplatin combination would have been superior if median survival was increased by 50 percent.

The study showed that both treatment arms had median survival, the most important clinical endpoint, of eight months and response rates of 27 percent. One-year overall survival was also reported to be similar for the Navelbine-cisplatin and Taxol-carboplatin arms (36 percent and 38 percent, respectively). It is notable that the Navelbine-cisplatin results of this study were remarkably consistent with those of the SWOG 9308 study, after which Navelbine-cisplatin became the new SWOG standard regimen for NSCLC.

A comparison of toxicities showed that the Navelbine-cisplatin arm was associated with significantly more grade IV neutropenia, leukopenia and nausea and vomiting; whereas the Taxol-carboplatin arm was associated with significantly more grade III peripheral neuropathy. Quality of life was maintained (improved or stable) in both treatment arms, which may indicate that although the two arms had different toxicity profiles, tolerability was similar based on patient quality of life assessments. Nausea and vomiting are treatable short-term effects of therapy. In contrast, peripheral neuropathy may have long-term consequences.

Navelbine Injection is indicated as a single agent or in combination with cisplatin for the first-line treatment of ambulatory patients with unresectable, advanced NSCLC. Navelbine is the only single agent approved by the FDA in 20 years for the treatment of advanced NSCLC. In addition, Navelbine is indicated in combination with cisplatin and offers clinical benefit as evidenced by response rates and overall survival. Navelbine is contraindicated in patients with pre-treatment granulocyte counts less than 1,000 cells/mm3. Granulocytopenia is dose limiting but is generally reversible and noncumulative over time.

In two large phase III studies, Navelbine plus cisplatin demonstrated an increase in overall response rate and median survival time, compared with cisplatin alone or cisplatin combined with vindesine.(A-C) The ASCO non-small-cell lung cancer expert panel has recommended this combination as among those that are effective first-line therapies in advanced unresectable disease.

Link to comment
Share on other sites

  • 1 year later...

In the last decade, the incidence of central nervous system (CNS) metastasis has increased. The very first reference I found of this was a NCI observational study in 1995 that reported experience in their clinic where recurrent systemic disease occurred in all patients for which they received dose-intense Paclitaxel (Taxol) therapy. Brain metastasis was the only site of disease recurrence. The cerebellum was involved in two out of three patients, presenting with headache, dizziness, unsteady gait, nausea and vomiting (all the things that happened to my wife in 1998, after her adjunct Taxol treatment in 1997).

This is what led me to research this further and found out about the rarity of ovarian cancer cells metastasizing to the brain. Ovarian cancer uncommonly involves the nervous system. Brain metastasis was a "rare" complication of ovarian cancer with only 67 well-documented cases in medical literature, until 1994. A multi-institutional study of 4027 ovarian cancer patients over 30 years identified only 32 cases while an autopsy study of ovarian cancer reported an incidence of 0.9%. Even more "rare" is the occurrance of Carcinomatous Meningitis. Until 1994, there have been only 14 cases reported. This presentation is similar to metastases from other solid tumors (breast, lung). (1)

In 2002, I came across a study by Christos Kosmas, M.D., consultant medical oncologist, Department of Medicine and Medical Oncology Unit at Helena-Venizelou Hospital, Athens, Greece entitled, "Carcinomatous Meningitis: Taxane-Induced," which found what is called "dissemination after taxane-based (Taxol) chemotherapy." The study conclusions stated that Carcinomatous Meningitis (a CNS metastasis) after a major response to front-line taxane-based regimens represents a grave disease manifestation and its incidence appears increased when compared retrospectively to non-taxane-treated patients. (2)

A commentary by Dr. Lawrence N. Shulman, Vice Chair for Clinical Services and adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, in the September, 2002 issue of The American Journal of Oncology Review, describes the complete lack of progress in the chemotherapeutic treatment of metastatic breast cancer since 1970. Dr. Shulman noted that a retrospective comparision of a well-characterized "standard-dose" database with a less well-characterized "high-dose" database suggested that there was increased early mortality for "high-dose" therapy. (3)

An editorial by Drs. V. Valero and G.N. Hortobagyi in the March 15, 2003 issue of the Journal of Clinical Oncology, reviewed all of the large, prospective, randomized trials published comparing taxane-based chemotherapy regimens. They conclude that none of these regimens have increased either complete response rates or overall survival, with median survivals remaining at two years or less, or precisely the same results which were being obtained over thirty years ago. (4)

In 2004, as reported at the 27th Annual San Antonio Breast Cancer Symposium, using a technique that quantifies circulating tumor cells, German investigators from Friedrich-Schiller University in Jena, have shown that neoadjuvant chemotherapy with paclitaxel (taxol) causes a massive release of cells into the circulation, while at the same time reducing the size of the tumor. The finding could help explain the fact that complete pathologic responses do not correlate well with improvements in survival.

In the study, according to Katharina Pachmann, M.D., professor of experimental oncology and hematology, breast cancer patients undergoing neoadjuvant chemotherapy gave blood samples in which epithelial antigen-positive cells were isolated. Such cells are detected in most breast cancer patients but are rarely found in normal subjects. The investigators measured the levels of cirulating tumor cells before and during primary chemotherapy with several different cytotoxic agents.

Paclitaxel (taxol) produces the greatest degree of tumor shrinkage but also the greatest release of circulating tumor cells. In three different paclitaxel-containing regimens, circulating cell numbers massively increased, whereas tumor size decreased. These cells remained in the circulation for at least five months after surgery.

The tumor shrinks, but more cells are found in the circulation. This corresponds with a high pathologic complete response during paclitaxel treatment, but in the end, this is not reflected in improved survival. These cells are alive in the circulation. What this study has shown, so far, that in three different paclitaxel (taxol) containing regimens, as the tumor collapses (a clinical response, not cure), it produces the greatest release of circulating tumor cells. The study has not looked at any other combination regimens. (5)

The results of these kinds of study are coming out slowly and quietly (now that Taxol is off-patent) and indicate that taxol containing regimens didn't prolong survival over other more conventional and less expensive cytotoxic drugs. Even before the advent of the CellSearch technique, it had been observed in various "cell death" assays, that there was an increase in the number of metabolic activity of mitochondria of the surviving cells from taxane therapy, even in cases where the majority of the cells are being killed by taxanes. It may indeed give clincial response (tumor shrinkage), sometimes impressive, however, these are mostly short-lived and relapses after a response to taxanes (Taxol) are often dramatic. (6)

With these cells being alive in the circulation, it may mean that a patient with invasive breast cancer without lymph node involvement (where systemic treatment "may" benefit), or a patient with invasive breast cancer that involves lymph nodes (where systemic treatment is "usually" recommended), would need additional (anti-estrogen) treatment, such as Tamoxifen (it may be given alone or in addition to chemotherapy, if given).

It has been shown that Tamoxifen treatment will reduce circulating tumor cells in some patients, but not all. So they develop a drug called Herceptin. Why? It has been shown that Herceptin treatment will reduce circulating tumor cells in patients with HER2-negative tumors, but less pronounced in HER2-positive tumors.

Does Herceptin really work on these circulating tumor cells? A study from the Dana Farber Cancer Institute identified central nervous system metastases in women who receive trastuzumab-based (Herceptin) therapy for metastatic breast carcinoma. Central nervous system disease is defined as one or more brain metastases or leptomeningeal carcinomatosis (carcinomatous meningitis).

Central nervous system metastases was identified in 34% of patients at a median of 16 months after diagnosis of metastatic breast cancer and 6 months from the beginning of Herceptin treatment. Patients receiving Herceptin as first-line therapy for metastatic disease frequently developd brain metastases while responding to or stable on Herceptin. (7)

In 2006, another report that CNS relapses are common among breast cancer patients treated with a taxane-based chemotherapy regimen. Central Nervous System Relapse in Patients With Breast Cancer Is Associated With Advanced Stages, With CK-19 mRNA-positive Circulating Occult Tumor Cells and With Her2/neu-positive tumors.

During the past years it has been frequently observed that patients with breast cancer treated with a taxane-containing chemotherapy regimen, either in the adjuvant setting or in the metastatic setting, presenting central nervous system (CNS) involvement as the only evidence of disease progression. More studies were therefore interested to evaluate the incidence of CNS metastases in patients with early and advanced breast cancer treated with a taxane-containing chemotherapy regimen and to identify predictive factors for CNS relapse.

Recent studies reported that breast cancer patients who received a taxane-containing chemotherapy regimen had a significantly higher incidence of CNS metastases compared with that of patients treated with a nontaxane-containing regimen. There are also data indicating an increased risk for brain metastases in breast cancer patients receiving trastuzumab (Herceptin).

In the present study it was also possible to confirm the initial clinical observation that breast cancer patients who receive a taxane-containing chemotherapy regimen have a significantly higher incidence of CNS metastases compared with that of patients treated with a nontaxane-containing regimen.

The reasons for the association between treatment of breast cancer with a taxane-containing chemotherapy regimen and an increased incidence of CNS involvement could be that taxanes are very lipophilic, their concentration in the CNS is very low after their intravenous administration. Taxanes are unable to penetrate the intact blood-brain barrier, the concentration of radiolabeled paclitaxel in the cerebrospinal fluid is found to be significantly lower than in other organs, and thus undetectable in the brain, in the spinal cord or in any other site of the CNS.

Also, paclitaxel is exported from the p-glycoprotein and other ATP-binding cassette transporters placed at the luminal membrane of brain capillaries, as an explanation for the low concentrations of taxanes in the CNS.

Furthermore, the detection of cytokeratin 19 (CK-19) and of mRNA-positive circulating tumor cells (CTCs) in the peripheral blood and the bone marrow of patients with breast cancer is correlated with increased incidence of relapse.

The aforementioned data suggest that taxanes may not penetrate well into the CNS, and therefore the CNS may represent tumor 'sanctuary' sites for taxane-containing chemotherapy regimens. A difference in the incidence of CNS relapses between patients with breast cancer and other solid tumors treated with taxanes was observed. (8)

The percentage of patients that must respond to a drug before it is approved by the FDA varies from as high as 80% to as low as 20%. Thereafter, it is used routinely for all patients with the same form of cancer, though unfortunately a drug that helps one person does not necessarily mean it will help all patients with the same diagnosis. The response rate for Taxol for FDA approval was 30%.

Taxol (Paclitaxel) is known as a taxane type of chemotherapy drug. Taxol is given into a vein, but in order for the body to absorb the drug, it must first be dissolved in a solution. The compound wouldn't dissolve very much in any solution. It was discovered that something Taxol would dissove in the might work in a reasonably safe intravenous solution in humans. It was an elixir made of castor oil and marketed as Cremophor EL. It was the only answer. However, this castor-oil carrier is suspected as the culprit behind the misery which includes nausea, vomiting, joint pain, appetite loss, brittle hair and tingling sensations in hands and feet (neuropathy). (9)

The American Cancer Society has mentioned that the solution can cause dangerous allergic reactions in many people, so patients "must" first take other drugs like steroids and antihistamines in "hopes" to prevent a bad reaction. The solution can also leach chemicals from regular plastic tubes used to deliver medication, so Taxol must be given through special tubing.

A new drug for breast cancer (Abraxane) is a new form of Taxol (Paclitaxel). Abraxane does not need to be dissolved in the castor oil solution and does not require special equipment to be given to patients. However, more of the women on Abraxane had numbness and tingling in their hands and feet. And more suffered nausea and vomiting, diarrhea, muscle and joint pain and anemia.

Taxol (Paclitaxel) is an extremely potent chemotherapy drug, often producing a number of side effects in patients. Side effects of Taxol (Paclitaxel) include severe allergic reactions, cardiovascular problems (such as changes in blood pressure), infections developing from white blood cell deficiencies, complete hair loss (apolecia), joint and muscle pain, irritation at the Taxol and other chemotherapy drugs injection site, low red blood cell count, mouth or lip sore, numbness or burning in the hands and feet, and stomach upset/diarrhea. (10)


(1) National Cancer Institute

(2) American Journal Clinical Oncology 2002;63:6-15

(3) Am J Oncology Rev 1(3):169-170, '02

(4) J Clin Oncol 21(6): 959-962, '03

(5) Oncol News Int'l, Vol 14, #5, May '05

(6) Cell Function Analysis

(7) Cancer 2003 Jun 15;97(12):2972-7

(8) Breast Cancer Res. 2006;8(4)2006 BioMed Central, Ltd.

(9) Office of Research, Florida State University

(10) Bionumerik

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Create New...

Important Information

By using this site, you agree to our Terms of Use.