Jump to content

Sticky DNA for Cancer Diagnosis


RandyW

Recommended Posts

Sticky DNA for Cancer Diagnosis

Filed under: Genetics

Scientists at the University of Florida have come up with a pretty nifty way to identify cancer cells. For now the research was done with leukemia, but the technology could be applied essentially to any kind of cancer:

Tan, a member of the UF Shands Cancer Center and the UF Genetics Institute, said that scientists know that cancer tissue has a unique molecular fingerprint that can distinguish it from healthy tissue. But attempts to target cells via these fingerprints have largely proved futile because there are few molecular tools to recognize the fingerprints. The UF team sought to create these tools in the form of aptamers, or short strands of chemically synthesized DNA. These aptamers exploit the differences on the surface of cells to discern cancerous ones. Key to the approach is it does not require prior knowledge of cancer indicators, Tan said.

"Using the cell-based aptamer selection strategy, we can generate aptamers which can specifically recognize any kind of cells without prior knowledge of molecular changes associated with the disease," he said.

In experiments, the researchers showed they could successfully design sets of aptamers that would recognize leukemia cells that had been mixed in with normal bone marrow cells. The aptamers also successfully distinguished leukemia T-cells from lymphoma B-cells. Both results indicate that the aptamer method could be used to identify many different types of cancer, researchers said.

Clinicians using such molecular probes should be able to "find cancer in a much earlier stage when the tumors are much smaller," enabling doctors to begin treatment earlier, Li said.

Richard Zare, a professor and chairman of the Stanford University department of chemistry, said he is "hugely impressed" by the findings reported in the PNAS paper.

"It represents a most clever, new approach to using the differences at the molecular level between any two types of cells for the identification of molecular signatures on the surface of targeted cells," he said. "I can easily imagine that it will have a most significant impact on developing therapies for disease states.""

The researchers are now testing the approach on lung cancer cells, liver cancer cells and cells infected by viruses...

Press release...

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use. We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.